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FIGURE 13-4 Pulse-amplitude modulation. (a) Signal; (b) double-polarity PAM;

(¢) single-polarity PAM.

sampled at regular intervals, and each sample is made proportional to the amplitude of
the signal at the instant of sampling. The pulses are then sent by either wire or cable, or
else are used to modulate a carrier. As shown in Figure 13-4, the two types are
double-polarity PAM, which is self-explanatory, and single-polarity PAM, in which a
fixed dc level is added to the signal, to ensure that the pulses are always positive. The
ability to use constant-amplitude pulses is a major advantage of pulse modulation, and
since PAM does not utilize constant-amplitude pulses, it is infrequently used. When it
Is used, the pulses frequency-modulate the carrier.

It is very easy to generate and demodulate PAM. In a generator, the signal to be
converted to PAM is fed to one input of an AND gate. Pulses at the sampling frequency
are applied to the other input of the AND gate to open it during the wanted time
intervals. The output of the gate then consists of pulses at the sampling rate. equal in
amplitude to the signal voltage at cach instant. The pulses are then passed through a
pulse-shaping network, which gives them flat tops. As mentioned above, frequency
modulation is then employed, so that the system becomes PAM-FM. In the receiver,
the pulses are first recovered with a standard FM demodulator. They are then fed o an
ordinary diode detector, which is followed by a low-pass tilter. If the cutoft frequency
of this filter is high ¢nough to pass the highest signal frequency, but low ¢nough o
remove the sampling frequency ripple, an undistorted replica of the onginal signal 18

reproduced.
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Pulse-time modulation (PTM) In PTM the sl Tz:p:ldh:ffeb:consmm .:::
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noted that all forms of PTM have the same advantage over PAM as 'frequency' 2 Cgﬂ-
tion has over amplitude modulation. In all of them the pulse amplitude rema n-

stant, so that amplitude limiters can be used to provide a good degree of noise immu-
nity.

Sampling theorem The sampling theorem states that, if the sampling rate in any
pulse modulation system exceeds twice the maximum signal frequency, the ongu_r:al
signal cun be reconstructed in the receiver with minimal distortion. The sampling
theorem is used in practice to determine minimum sampling speeds. Consider pulse
modulation used for speech. Transmission is generally over standard telephone chan-
nels, so that the audio frequency range is 300 to 3400 Hz. For this application, a
sampling rate of 8000 samples per second is almost a worldwide standard. This pulse
rate is, as can be seen, comfortably more than twice the highest audio frequency. The
sampling theorem is satisfied, and the resulting system is free from sampling error.

13-2.2 Pulse-Width Modulation
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FIGURE 13-5 Pulse-width modulation. (a) Signal; (b)) PWM (width variations
exaggerated).
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_ Pulse-width modulation has the disadvantage, when compared with pulse-
position modulation (PPM), which will be discussed next, that its pulses are of varying
width and therefore of varying power content. This means that the transmitter must be
powerful enough to handle the maximum-width pulses, although the average power
transmitted is perhaps only half of the peak power. PWM still works if synchronization
between transmitter and receiver fails, whereas pulse-position modulation does not.

Generation and demodulation of PWM Pulse-width modulation may be generated
by applying trigger pulses (at the sampling rate) to control the starting time of pulses
from a monostable multivibrator, and feeding in the signal to be sampled to control lhc
duration of these pulses. The circuit diagram for such an arrangement is shown in
Figure 13-6.

The emitter-coupled monostable multivibrator of Figure 13-6 makes an cxc_cl-
lent voltage-to-time converter, since its gate width is dependent on the voltage to which
the capacitor C is charged. If this voltage is varied in accordance with a signal voltage,
a series of rectangular pulses will be obtained, with widths varying as required. Note
that the circuit does the twin jobs of sampling and converting the samples into PWM.

It will be recalled that the stable state for this type of multivibrator is with T
ofF and T, ON. The applied trigger pulse switches Ty N, whereupon the voltage at C,
falls as T, now begins to draw collector current, the voltage at B, follows suit afld T;
is switched OFF by regenerative action. As soon as this happens, however, C begins to
charge up to the collector supply potential through R. After a time determined by the
supply voltage and the RC time constant of the charging network, B, becomes su_fﬁ-
ciently positive to switch T, oN. Ty is simultaneously switched OFF by regenerative

—oB+

Fixed| | Variable
Out

FIGURE 13-6 Monostable multivibrator generating pulse-width modulation.



| 498 ELECTRONIC COMMUNICATION'SYSTEMS

13-2.3 Pulse-Position Modulation (PPM) il -
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transmitter must send synchronizing pulses (0 operate timing circuits in the receiver.
As mentioned in connection with PWM, pulse-position IT.lOdlllilllOI] has_ the advgnlage
of requiring constant transmitter power output, but the disadvantage of depending on

transmilter-receiver synchronization.
Generation and demodulation of PPM Pulse-position modulation may be obtained
very simply from PWM, as shown in Figure 13-7. Considering PWM and its genera-
tion again, it is seen that each such pulse has a leading edge and trailing edge (like any

the locations of the leading edges are fixed,
eir position depends on pulse width,

whereas those of the trailing edges are not. Their
which is determined by the signal amplitude at that instant. Thus, it may be said that

the trailing edges of PWM pulses are, in fact, position-modulated. The method of
obtaining PPM from PWM is thus accomplished by **getting rid of’’ the leading edges

and bodies of the PWM pulses. This is surprisingly easy to achieve.
Figure 13-7a and b shows, once again, PWM corresponding to a given signal.

If the train of pulses thus obtained is differentiated, then, as shown in Figure(13-7c,

another pulse train results. This has positive-going narrow pulses corresponding to

leading edges and negative-going pulses corresponding to trailing edges., If the position
corresponding to the trailing edge of an unmodulated pulse is counted as zero displace-
ment, then the other trailing edges will arrive earlier or later. An unmodulated PWM
pulse is one that is obtained when the instantaneous signal value is zero. These pulses
are appropriately labeled in Figure 13-7b, They will therefore have a time displacement
other than zero; this time displacement is proportional to the instantaneous value of the
signal voltage. The differentiated pulses corresponding to the leading edges are re-
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FIGURE 13-7 Generation of pulse-position modulation. (a) Signal; (b)) PWM; (c) differen-
tiated; (d) clipped (PPM).

moved with a diode clipper or rectifier, and the remaining pulses, as shown in Figure
13-7d, are position-modulated. - _
When PPM is demodulated in the receiver, it is again first converted l.nt.o

PWM. This is done withia flip-flop, or bistable multivibrator. One input of the mu}twn—
brator receives trigger pulses from a local generator which is synchronized by trigger
pulses received from the transmitter, and these triggers are used to switch OFF one of
the stages of the flip-flop. The PPM pulses are fed to the other base of the flip-flop jdnd
switch that stage ON (actually by switching the other one oFF). The period of time
during which this particular stage is OFF depends on the time difference between the
two triggers, so that the resulting pulse has a width that depends on the time displace-
ment of each individual PPM pulse. The resulting PWM pulse train is then demodus
lated.

—

.

£
/ 13-2.4 Pulse-Code Modulation (PCM) — )
Pulse-code modulation is just as different from the forms of pulse moduT\ation so far
studied as they were from AM or FM. PAM and PTM differed from AM and FM
because, unlike in those two continuous forms of modulation, the signal was sampled
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